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1 — INTRODUCTION

Composite materials consisting of high tensile resin-impre-
gnated fibers are being more and more freq:ently used in
structures capable of high mechanical performance. Direct
calculation of deformation of these structures using the
finite elements method raises major difficulties due mainiy
to the very high number of heterogeneities in the material.
Computation methods are, therefore, based on investigation
of equivalent homogeneous materials, i.e. effective behavior
meduti (Willis, Hashin ...).

In this paper we use the homogenization method. This me-
thod applies when the maierial being investigated has a pe-
riodic structure. it can then be shown that when the dimen-
sions of the period tend homothetically to zero the fields of
deformation and stresses tend to those corresponding to a
homogeneous structure whose elastic properties can be
computed precisely when a single period of the composite
medium to be investigated is known. This boundary value
structure is the homogenized structure and its behavior
coefficients are the homogenized coeflizients. This is the
macroscopic equivalent structure. Furthermore by a locali-
zation procedure the method allows an easy computation
of the microscopic field of stresses and, in particular, of
stress forces at the boundaries between fibers and matrix.
These stress-forces are particularly important because they
can initiate cracks and delarninations. The overstresses at
the microscopic lavel may produce fiber ruptures.

After presenting the general method of homogenization,
which leads first to an homogenized equivalent Macrascopic
structure and secondly to 2 localization procedure for com-
puting the field of microscopic stresses and stress forces, we
apply the method to two types of composite materials

i} Material reinforced by periodically arranged, parallel
fibers (Figure 1)

Fig. 1 :PARALLEL FIBERS

ii} Material consisting of a very large number of parallel
layers of homogeneous materials supernosed periodi-
cally (Figure 2} . :

X3
X3
X4
AD
LAYER 12 {
) i ,
i
11} |
{ f

Fig. 2 : MULTIPLE LAYERS

This is followed by the numerical results obtained by using
the MODULEF code.
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2 - DESCRIPTION OF THE HOMOGENIZATION given in Figures 6 and 7.
. METHOD [1) (4] [5] {10] (12]
7\ M\

o e ——— e

2.1 — Formulation of the probiem

Let us consider an elastic body which occupies a region 2

refated to a system of orthonormal axes Ox1 Xy X3. This

body is subjected to a system of voluminal forces(éfi } and v ~\ ~

surface forces { Fi } on a portion ’CF of boundary O §2. The

other portion of the boundary is | 5, to which a zero move-  Fig. 6 : MATERIALS WITH FINE PERIODIC STRUCTURE
ment condition is imposed.

RS

s e g

I .

Fig. 7: MATERIALS WITH FINE PERIODIC STRUCTURE

I All the period forms must be such that opposing faces which

b correspond in a transiation can be defined two by two.

] In all cases we shall designate as Y a period characteristic
of the material which has been enlarged by homothetics
and fixed once and for all. € then designates the homothetic

. o o o ratio which is small and which takes us from Y to a period

The f:leld of stresses at equilibrium satisties the equilibrium ;5 e eiastic' material. The elastic structure of the material

! equations is then fully known if it is given over a single period, e.g. the
" Uii et =0 in enlarged period Y related to the orthonormal axis system

. 5 i< 0y1 Yo Y3 Then et 2iikh {y} be the coefficients of elasticity

L "j ’ on Y, which generally alter very quickly with respect to v,
but satisfy in all respects the symmetry relation

i . n = F. .

i 2 on ! on I 3jkh tv) = 3 ) = agp; tv)

Furthermore, the material is elastic with fine periodic struc-

ture, i.e. S is covered by a set of identical periods of rec-  and pusitivity relation

tangular {Fig. 4) or hexagonal {Fig. 5) or more complicated V

shapa such as the examples ' 3&0 > 025, W) Ty TunZ g Tj; Tij . Tij=rji

E The functions y —=3jikh (y) defined on Y are extended by

r Y-periodicity to the entire space Oy1 Yo Y3 assumed to be

% covered by contiguous periods identical ta Y.

;” o The coefficients of elasticity in the material £ are then

€ .
= Fig. 4 : MATERIALS WITH FINE PERIODIC STRUCTURE ~ %ijkh ~ (X} defined by
aikh © 00 = g v v = _:_

. For greater simplification in the text we shail write :

atvl= {on ). af i = atd), oz {o;}

: v
and shail consider a ly) or a € (x} as xnown matrix 6 x 6

Fig. 5: MATERIALS WITH FINE PERIODIC STRUCTURE  ndexed by the symmetrical pairs (i, j}.
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The law of elasticity
i

3) aii = ai]kh ¢ {x) °kh {u}
is written
0= a(x) efu),

where 3 Su. Su

Q(U)T-'{Eii(u,% B eii(u)‘-‘.-—z—(g-x—: + -5-)%)

When an ambiguity is possible, either 8y () or e, (u) will
be specified depending on whether the drift occurs with
respect to X or y. The boundary conditions are finalized
by

4 u=0enl; 0
The problem posed by (1) (2} (3} (4) has a unique sofution
which depends on € and which we shall designate u € ; to
this corresponds a field of stresses O € given by :

5] 0f=za€ix) elu®)
Numerically it is very difficult when e is small to calculate
u € since there are a large number of heterogeneities in the

elastic medium. We therefore try to obtain a limited expan-
sion of the solution u®,0¢.

2.2 ~ Asymptotic expansions
The solution is affected by two factors :

i)} The first is the scale of £ and arises from the forces
applied and the conditions at the boundaries.

ii} The second is due to the periodic structure ; itison
the same scale as the period and is repeated periodical-
ty.

This justifies looking for an asymptotic expansion of the
form :

6) u€=ul0uy) +€ulix.y) + €2 u2ix, ) +...

where the ua:(x, y) are, for each x&%, Y-periodic func-

tions with respect to the variable y&Y. Theny= -;—(- is ap-

plied to (6). Associated with the expansion (6) is an expan-
sion of the field of deformation e fu €}  (°).

-1 0 0 1
7 e(ue)-?ey(u b+ e (7) +ey (ul)
1 2
+ Gtex(u )+ey(u )]+

and of the field of stresses o €

8) of:z -:,-ao(x,y) s 0 oy +ealixyl ..
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with
ao(x,v) = aly) ev(u
olixyl = aly [ey W' + e, (uo)]
oz(x, y) = aly) [ey (u2) + e, (u‘)}

The equilibrium equations (1) applied to T give

..LS_ €.+ 8 =0
Ox. i )
e i

or in_a more condensed form
9 divo® +£tz0.

Given the expansion (8) of G we have (**)
100 Ly div v o9 +%tdivy o! + div, o¥

+divy 0?4+ div e f+ .. =0
x€Q,yEY.

The boundary ccnditions (2) are treated in the same way

1) L o%.n +01.n-F+602.n+...:0

€
forxerFer.

Finally the conditions (4) mean that

12) u':’-f-eu1-|-62u2 4+ .=0

forxel,, yEY.

By making the various powers of € zero we obtain :

0.

: 0.
div, 0 =0
13)3 Y
ag” = aly) ey {u

0
M’);divy o! + div ao: Q
ol=z aly) [ey (u‘) + ex(uo)]
div
15)3 Y

0= aly) [ey(u2) +ex(u1)]

o2 4dv o' +f=0

The equations {11) and (12} will be used later.

{*) Note that

) é

A uox iy o Wixy) + L L uixuy)
x; 0% € bv;
. 30a
) (@S0 o taogl i
i = { - ©d podt (ESUUEIN
dnlv o {(Sy }, v, 0 { axi }

]
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2.3 -~ Resolutions )

The systems (13) (14) {15} contain differential operators
in y. They therefore constitute equations with partial

derivatives on the period of base Y, the unknown factors
being the Y-periodic furctions.

Systam {13) : This leads immediately to :

16) 00: 0,u°=u°(x)»

System (14) : In view of (16) itis reduced to :
. 1 1 1 0
17} dwy o-O,o_a(y)[ey(u )+ex(u )]

The deformation e, (: 0) is a function only of x ; itthere-
fore plays the role of a parameter with respect to the diffe-
rential system in y. Due to the linearity, o , u1 may there-
fore be writtan in the form :

ot =iy e kh (U %
18)%
utz XNy e w0
where 0 0
ey lu 0)= —1—(.__._&6” + 5__11\1 )
2 bx, Oxy

s div sh =9
191 s = aty) [Ckh +e, (xkh)]
th is Y-periodic

The tensor Ckh has components given by
kh _ 1
T, _-3"51k51h + iy Oy !
it can be proved that the system {19) determines the vec-
tor X {y} to within an additive constant.

For any function &= ¢ (x, yi, we define

1
P>z ey fch (x,y) dy

The solution o ! of (14) is given by,
200 o'yl = aln [6K = ey (M) ey O,

and taking the mean value, we obtain,

1. - kh 0
21) <°ij>" qii L fu™)

where
kh
22) q, :<aijkh lyl>»-<a

~kh
i v) e g (X 1>

iipq

Systam {15) : It suffices to take the mean on Y in the
the first equation to obtain

68 -

1

23) div, <o'> 4+t=0 inQ

f we introduce Z= <o 4> ,we Have

div, £ +fz0 in A

kh

24)

if
Using equation (12) and taking the mean on Y in {11],.we
obtain :

U0:0 on rb .
25)"
I nczF on FF .

The system (24) with boundary conditions (25} is a well
posed alasticity problem ; the equilibrium equarions are
unchanged, as well as the toundary conditions. The elastic
constitutive relation is

. 0
Z'l-qli ] ekh(u )

It is homogeneous sinca the coefficients g :(ih given by
(22) are independent of x & Q . These coefficients define
the equivalent homogeneous material. They are called homo-
genized coefficients. The stress field £ =(2ij) is called the
macroscopic stress field and is defined by

1

Zz=<ag'>

- The strain field € = e, {u o) is called the macroscopic

strain field and satisfies

- 0 1
E=<e,lu )+ey(u >

It can be proved that the homogenized coefficients qkhii
satisfy

kh ii
- } -
f a9 T9%n (= ajjn)

kh
Q3a1 >0, qii S Skh2 @ S Sij - Vsij =55
. kh . "
This shows that (a ;; ) are reasonable elastic coefficients

and that the macroscopic scale problem (24) (25) has a
uniaue solution.

2.3 — Microscopic fields. Localization

The stress field ¢ 1 (x, y) is the first term of the asymptotic
expansion (8) of the stress field ¢ € {x) solution of the ini-
tial exact problem. The field o ! (x, y} is called the micros-
copic stress field, !f we imagine that at each point x€&§2,
there is a smail € Y period with its cemposite structure, then
oV ix. v} gives, for x kept fixed in €, a stress field in this
period.
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It can be shown that 0 € (x) - o | (x, X
inthe L! (ﬂ) norm when € tends to zero Thus proves
that ¢ ! {x, -6— ) is a good approximation of o € (x) when €
is small. The microscopic stress field ¢ ' (x,y),y = ZXcan
be calculated as follows : ¢

) tends to zaro

i} First we obtain the six X kh (y} vector fields on Y,
each one been associated with tensor 5kh= Zhk These
six vector-fields ars solution of problem (19), which is
an elastic type problemon the inhomogeneous period
Y.

ii) From the vector fields X kP (v) we get the homogeni-
zed coefficients q lh by formula {22).

iii) We solve the macroscopic scale, homogenized elastic
problem (24} (25) on £ . It gives the macroscopic
stress field X (x) and the macroscopic strain field

w0 = Ew), for xEQ.

iv} Localization procedure using formula {20) we can
caiculate o ' (x, y). For x fixed in §) , this stress
field on Y -shows how the macroscopic stress
Sx)= <o (x,y)> islocalized inan €Y period 2t
xe (2

It can be proved that when € tends to zero, the stress field

o € (x) tends to X (x) in the weak L2 (£2) topology. Never-

theless @ ' (x, -} isabetter approximationof o € (x) than

Tix) : thenorm L1 (Q) convergence implies that

o€ix)~a'! x, 2
tends to zero for almost every point in §, while the weak
{Q2} convergence does not. The macroscopic stress field

X (x) is just a mean value while o ! (x,—ex—) takes into ac-
count the fine periodic structure of the composite material.

3 — APPLICATION TO AN ELASTIC MATERIAL REIN-
FORCED BY FIBERS RUNNING IN THE SAME
DIRECTION {1][7)

3.1 —~ Principle

The computations of the previous paragraph are applied to
an elastic material formed from a multitude of resin-impre-
gnated unidirectional fibers whose geometric distribution is
periodic in 3 plane perpendicular to their direction X3

(el

{bi

Y2

A4

Fig.8 :a) STRUCTURATION OF FIBERS
b) BASE PERIOD

AR .
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Calculation of the homogenized coefficients Qjih Calls for
the resolution of (19). In the present case the coefficients

iikh (y) are independent of y3 : the result is that the fields
/é" {y) are also independent of y3 : in {19) the vat;f

PomT ey

indicas give a zero contribution when they refer to
making computation of X I (y) a bidimensional problers.

3.2 -~ Numerical results
In all the cases studied, the homogenized material is ortho-

tropic, in other words the law of behavior has numerous
zero elements as shown in the table below :

.
91 Q1111 9922 933 0 0

o T
%22 92222 92233 0 o0 o €52

(-]
2wl B = a3a3 0 O 0 | Jeg
gs3 ‘SYM- 2Q2323 0 0 €23
%3 2ay313 © €13
%2/ . | 2a12190 {612

where {a i } and {e ii} are stress and strain tensors.

The law {26) is inverted conventionaily to be written [6] :

-
t_ Y12 U3 0 0o 0] %y
€ \ e !
1 0 0 0 o
22 -2 z
2 %2
€33 0 0 0 933
20 = ?];
]
€23 . SYM- 3 (323 0 0 993
€13 ié]3 0 %13
. Co 1!
€12 L LAY %12

bringing out the following :

The Young's moduli Eq. Ep. E3 in the directions of ortho-
tropy

The Poisson’s coefficient Vg3, V13, Uyp

The shear moduli 623, G13. 512

The numerical resuits which follow have been obtained by
using the MODULEF code {2} . They have been produced
for numerous values of the ratio of impregnation and various
forms of the cross section of the tibars.

We give here a part of the results ebtained for various forms
of fiber, and also the curves showing the change in these
coetficients with respect to the ratio of resin impregnation
for fibers of circular section (fig. 9-10-11)
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1 ALIGNED CIRCULAR FIBER
o
; FIBER
- E1=38105MPa_  G,5=2.10%mPa
. E2=E3=.14510° G, =G,,=3.810*MPz
4 125913
- Vi 3 =22 vy3=.25
4
1 RESIN
“ 3 E=3520 MPa v=.38
-
2
;
¢
1
A
1
1
'l
0.38E08
: 0.34EC6
3 0.30E06 |
3 0.27E06 |
3
; 0.23£06 |
g 0.19E06 J
3 0.15606 |
/ ~ i
4 I
. B 0.11€08 |
- 076805 |
- - 0.38£05 1
0 e v T T i
0. 020 040 060 080 1.
[ RESIN'S RATIO 1
|
| - Fig. 9 : VARIATION OF LONGiTUDINAL YOUNG's
MODULI

g
oy
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14500
13050
11600
10150
8700
7250
5300
4350
2300

1450

Fig. 10

G000
5400
4800
4200
3600
3000
2400
1800
1200

600

/ E2=zE3 (MPA)

d

0. 020 0.0

0.60 0.80 1.00

[ RESIN'S RATIO |

MODULI

VARIATION OF TRANSVERSE YOUNG's

| SHEAR MODULUS {MPA) . |

— G223

G12

=G13

T

0. 0.20 0.40

K

0.60 0.80 1.00

RESIN'S RATIO

Fig. 11: VARIATION OF SHEAR MODUL/
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3.3 ~ Anisotropy curves (Fig. 11)

It is important to note that the homogenized media obtained
are generally not transversally isotropic. This comment is
clearly demonstrated if the Young's modulus is calculated in a
transverse direction with polar angle 8. By applying the
Young’s modulus on vector radius we obtain the curves
given in Figure 12. For the material to be transversally
isotropic, the curves plotted should be arcs of a circle cen-
tered at tha origin.

Note :
The Young’s modulus in direction 8 is given by :
1

1 4 1 . 4
— e CO$ 0 4 e sinTH
@ - E, E,

+5in20 cos20 (-2F23 4 1,
g, Gp

This relation enabled the anisotropy curves in Figure 12 to
be plotted.

The material is transversally isotropic if E (8) is not depsen-
dent on 6, which is equivalent to '

Ez: Ea= 2623 {1 4 V23)

RESIN IMPREGNATION RATIO BY VOLUME 50 %
(FIBERS // TO X1).

FIBER ’ RESIN

E1= 380000 MPa ; G23=20000 MPa ;}'23=.25 |E=3520 MPa
E2= 14500 MPa ; G13= 38000 MPa ;}'13=.22

E3zE2 ;612=2G13

V122113138

"
ey ez | €2 |,z |2 |y | 6| Gz | oo

192000} 9730 | %070 n 28 38 2452 | 537 | 134

191500{ 7620 | 78620 a4 s 9 2755 | 1062 | 2682
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10006 ! E3 (MPA) I
J ORTHOTROPIC KIDNEY (s}
- . ORTHOTROPIC KICNEY (b)
...... ORTHOTROPIC CIRCLE Ic}
8000 |
7000 | -
6000
so00 |
4000
3000 \
2000 ] ".‘
1000 '-'
° T T T T
0 2000 4000 €000 8000 10000
Cezmear_]
Fig. 12 : TRANSVERSE ANISOTROPY FOR 2 CROSS

SECTIONS OF FIBER

3.4 — Stagger

If the fibers are staggered, i.e. if a period characterizing the
material has the form shown in Figure 13, we obtain diverse
characteristics in accordance with the relative values of the
sides of lengths of the rectangular cell.

i) 1f £ =1 (square cell) : the characteristics of directions
Oy2 and 0y3 are identicaf, and have the same Young's
modulus in particular.

i) 1f X = V3, ie. if the fibers are located at the apexes of
an equilateral triangle (Fig. 13) it can be shown that
the material is transversally isotropic. This property is
true for any impregnation ievel of the resin.

iif) The bisecting qirections 0 72 and 0 V3 play the same
roles irrespective of the values of..?. and the impregna- .
tion. in particular, the Young's moduli §1 and §2 in -
these directions are always equal.

ivl In Figure 14 are plotted the Young’s and shear moduli
corresponding 1o the various values of J varying from
1 to 2 and for the same resin impregnation level by
volume. Fori:l, the cell is square and naturally Ey=
E, We then find E, =E, ford=V3 since then the fibers
are at the apexes of an equilateral triangle and the ma-
terial is then transversaily isotropic, which implies
51 = ..EZ' {n the same figure are plotted the values
E1 = E2 of the Young's modulus in the bisector direc-
tions 0 y, and Q ?/'2, )

For 4= V3 we find a triple point since naturally the
transverse isotropy then implies

E1:E2: E,:Ez
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CHARACTERISTICS -

FIBER: E 84000 MPA

22
RESIN: E 4000 MPA

34
RESIN RATIO 36
FIBERS // Y1
REF.1:0Y1Y2Y3
REF.2:0Y; Y2 Y3

¥3

\ /% \ /
] \ £
i \
NS
I ‘
]
/ N, ; ; |
i }
V AWy
W J

Fig. 13 : EQUIDISTANT STAGGER (L =1.73)

3.5 - Comparison with experiments i

The development of this previsional method is aimed at ob-
taining complete sets of characteristics for three-dimensional
computations of composite structures through the finite
alements method.

" The possibilities of experimental characterization are indeed

very reduced. Few tests are reliable, each one being specific
to a characteristic, not permitting to reach themn all. The
results of measurements being very scattered in relation to
prod'uction batches, mean values have to be used.

The extreme variety of resins give a very wide range of pro-
ducts to be used in production. Each fiber-resin pair can be
associated within variable proportions. It is unthinkabdle o
be able to experiment all configurations.

Each material is therefore characterized in an incomplets,
dissimilar and inaccurate manner.

Tables presented hereafter explain application of the homo-
genization theory to the two materials : glass R - Resin
Ciba 920 (36 % - Resin in volume} and carbon CTS - Resin
Ciba 920 (5C % resin in volume). We have considered several
distributions and shapes of fiber.

Taking these values into account, average measured values
were assigned to glass-resin composites while values obtained

9000 [_SHEAR MODULUS (MPA) |
‘ ——— G23 REF.1
.. G13REF.1
8500 \ ----- G12REF.1
------ G23 REF. 2
8000 —~-=— G12zG13REF.2
7500
7000
6500
§000
5500 ] e
t K
5000 |
4500 |
4000 , . . .
100 120 140 160 180  2.00

21000 L_YOUNG's MODULUS (MPA] ]

20000
19000
18000
17000
16000

15000

14000

13000 . ]

—. E2zE3REF.2
£2 REF. 1
----- E3 RLF. 1

12000 |

11000

Fig. 14 : VARIATION OF YOUNG's AND SHEAR MODUL/
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by transposition of tests results and proportion computa-

tion were assigned to carbon-resin composite. As a reminder,

characteristics obtained with two bidimensional previsional

methods : PUCK [11] and HALPIN-TSAI {14} wers also

given. For reasons indicated formerly, comparisons must be

cautiously made. Results obtained for glass-resin composite

with staggered fibers layout at the apexes of an equilateral

triangle (ensuring transverse isotropy) are nearest to measu-

red values . With those two methods, V23 and Gy cannot be
abtained.

As far as carbon based compusite is concerned, it is less

clear but, in this case, the real shape of the fiber is not ob- .

served. On the other hand, when the shape is more accurate
{«Kidney» shaped), the direction of the fiber does not vary
and is therefore as little realistic. Of course, a configuration
taking into consideration random direction will probably be
nearer to the truth.

For the two considered materials, estimates based on the
homogenization theory are nearer to those based on the
widely used HALPIN-TSAI merhod.

The homogenization theory seems efficient to compute the
machanical characteristics of composite materials.

Validity of the results is evidently subjected to the assump-
tions made on shapss and lay-out of fibers. However, the
undeniable advantage of this method aims at supplying
complete and consistent sets of values, mutuaily coherent.

COMPARATIVE TABLE FOR CARBON CTS
RESIN CIBA 920 (50 % RESIN IN VOLUME) COMPOSITE

HOMOGENIZATION THEORY OTHER PREVISICNAL METHGDS
REFERENCE
ALIGNED STAGGERED “KIDNEY”
VALUES CIRCULAR CIRCULAR SHAPED FIBERS PUCK | HALPIN-TSA!
FIBERS FIBERS ( MEAN VALUES) '
Eq 120 000 119298 119 293 119290 119 260 119 250
{MPa) !
£; i 6000 6 264 i 035 8000 11620 5520
(MPa) L .
E3 6900 6284 6035 7950 11 620 £ 620
{MPa)
Y12 i 0,28 0.299 0.298 0.31 03 | - 03
!
Y13 0.28 0.299 0.299 0.29 03 | 03
' .
Y23 I 0.20 0.435 0.457 0.27 - -
|
G2 3800 3454 3391 4500 4250 3350
(MPa)
13 3000 3454 339 3200 4250 3350
(MPa)
G - -
23 (upe) 2500 2631 3266 2100

88-9




] COMPARATIVE TABLE FOR GLASS R-RESIN ORICIN i 7/ Yj
- 3 - r. ] » L{‘
E CIBA 920 (36 % RESIN IN VOLUME) composiTe ~ OF PUOR QUALTIT
: _
§ HOMOGENIZATION THEORY OTHER PREVISIONAL METHODS |
MEASURED
. : ALIGN; : STAGGERED |
% VALUES | .
?{ CIRCULAR| RS | CIRCULAR FIBERS PUCK HALPIN-TSAI
4 - -
1 1 (Mpa)| 55000 55 226 55 215 54 450 54 450
i . . .
k E2 20 275
~ 16016 18 800 18 570
14 (Mpa) | 17000 (E2=13 496) 8 -
3 E3 2025 | 16 016 18 800 18 570
1 : (Mpa) | 17000 (3213 498) - .
E Y12 0.26 0.253 0.256 0.264 0.264
Vi3 0.26 10253 0.256 0.264 0.264
0.229
] - ~ 0.3 - : -
Y23 (153=20.487) 357 ,
G12 930 5560
(Mpa)| 5600 6 383 5 837 6
G1
3 mpa)| 5600 6383 5 887 6 990 5 560
G 4539
23 - ~ 5 882 - -
(MPa) (G23=8 250) v
3.6 — Microscopic stress field -

Given a structure consisting of a unidirectional material and | \
subjected to a simple shearing overall stress field within the | I
plane {1.2) normal to the direction of fibers, the siaxial - | <0
stress tensor at macroscopic fevel is ]

0 [+] 0 i
c 0 0 |
0 0 0
o /
The localization method allows calculation of beth the stress . v
field at microscopic level which, in any point of the mazterial
period, is : Fig. 15 :STRESS FORCES
911 92 O
012 922 O
0 0 033
and the stress forces at fibre / matrix interface as represznted
in Figuia 15.
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2 ‘ ORIGINAL PACT *2
: ‘ OF POOR QUALITY

2) alaminatz corsisting of 18 layers identical to the above
and laid up at successive anglas of 10° to each other. It
i$ t0 Le checksd that the same result is obtained as in
the previcuys czse,

We give in the tz2bie presented hereafter the moduli of each
layer and the mocuti of the composite which are identical
for the two czees (2 ayers and 18 layers).

i
1 4 — APPLICATIOH TO A PERIODIC STACK OF HOMOGENIZED MOOULI| HOMOGER(ZED MODULI
i HOMOGENEOUS LAYERS (4] (7] OF EACH LAYER OF COMPOSITE
i, E? 120 963 MPa 45 128 MP2
f 4.1 - Principie E2 6 0C0 MPg 45 128 MPa
b
r We shall consider 3 periodic stack of a muititude of homo- €3 6 006 1Pe 6 198 MPa
g genized layers, Each layer is charactarized by a direction of y23 0.20 0.188
14 the fibers. In the stack these directions vary periodicaily
; whilst remaining nrihogonal to axis Ox5. ¥13 0.28 0188
. y12 0.28 0.30
L interface: ’
i G23 2500 MPa 3015 MPa
P
Cijkh 3! / 1ayer (51 =€ ijkn (constant) 613 3800 MP. 3015 MPa
l 612 3800 MPs 17 250 taPa
3
l1
P l‘ .
' 50 INTERFACE Conclusion
: LAVER 2 f
[ § ? 5 We have presented severa! applications of the homogeniza-
= tion techniques for computing the coefficients of elasticity
3 V:‘ Sijkn X3! LAYER {g) = 1jin (CONSTANT) of Fomposnte materizals. Other applications usmg the Iocal.i-
3 f ; 2ation procedure are contemplated as regards fine analysis
l of the field of stresses using asymptotic expansions, the
. effect of defects in the composites {9] and more generaily,
Fig. 16 : MULTIPLE LAYERS. EACH LA YER POSSESSES damage to the materials of composite structure containing
; A PLANE OF ELASTIC SYMMETRY NORMAL inclusions or precipitates.
i TO THE X3 AXIS (IMONOCLINIC SYMMETRY)
Strictly speaking, these techniques apply only to absolutely
F In this situation the homogenization formulae are conside- rin:q;c.mungrf:'tbl{;Wl:: thi b?fk'tng 9f Sta‘t.‘:nlw anba-
1 rably simplified since the problem (19) is then reduced to a y.ed ' : So ole do' : ;nfu y U e' .uc uat;ons ' elT ‘oh e'
system of differential equations which may be solved ex- pr(_) uce . d‘( .peno' ': erects. t 's note ’genera vyt :(;
plicitly. For ths details, refer 1o D. Begis, G. Duvaut, A. strict pern}o icity ren'n orces the amsotropv- of the‘comput
Hassim [1] and to the references in this publication. homogenized material with respect to the industrial moael.
.
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